Volume 1, Issue 4, November 2016, Page: 86-92
Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions
Mohsen Rostamian Delavar, Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran
Farhad Sajadian, Department of Mathematics, Semnan University, Semnan, Iran
Received: Sep. 9, 2016;       Accepted: Oct. 17, 2016;       Published: Nov. 9, 2016
DOI: 10.11648/j.mcs.20160104.13      View  3674      Downloads  174
Abstract
In this paper by using the concept of log-η-convexity of functions some interesting inequalities are investigated. In fact new Hermite-Hadamard type integral inequalities involving log-η-convex function are established. The obtained results have as particular cases those previously obtained for log-convex
Keywords
Log-η-Convex Functions, Integral Inequalities, Hermite-Hadamard Type Inequalities
To cite this article
Mohsen Rostamian Delavar, Farhad Sajadian, Hermite-Hadamard Type Integral Inequalities for Log-η-Convex Functions, Mathematics and Computer Science. Vol. 1, No. 4, 2016, pp. 86-92. doi: 10.11648/j.mcs.20160104.13
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
R. Ahlswede and D. E. Daykin, Integrals inequalities for increasing functions, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 86(3)( 1979), 391–394.
[2]
A. Aleman, On some generalizations of convex sets and convex functions, Anal. Numer. Theor. Approx. 14 (1985), 1-6.
[3]
C. R. Bector and C. Singh, B-Vex functions, J. Optim. Theory. Appl. 71(2) (1991), 237-253.
[4]
S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, (2000).
[5]
B. Definetti, Sulla stratificazioni convesse, Ann. Math. Pura. Appl. 30 (1949), 173-183.
[6]
M. Eshaghi Gordji, S. S. Dragomir and M. Rostamian Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl. 6(2) (2015), 26-32.
[7]
M. Eshaghi Gordji, M. Rostamian Delavar and M. De La Sen, On φ-convex functions, J. Math. Inequal. 10(1) (2016), 173-183.
[8]
M. Eshaghi Gordji, M. Rostamian Delavar and S. S. Dragomir, Some inequalities related to η-convex functions, Preprint, RGMIA Res. Rep. Coll. 18(2015), Art. 08. [Online http://rgmia.org/papers/v18/v18a08.pdf].
[9]
M. Eshaghi, F. Sajadian and M. Rostamian Delavar, Inequalities for log-η-convex functions, to apear in Int. J. Nonlinear Anal. Appl.
[10]
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550.
[11]
D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
[12]
I. Hsu and R. G. Kuller, Convexity of vector-valued functions, Proc. Amer. Math. Soc. 46 (1974), 363-366.
[13]
J. L. W. V. Jensen, On konvexe funktioner og uligheder mellem middlvaerdier, Nyt. Tidsskr. Math. B. 16 (1905), 49-69.
[14]
D. Kuroiwa, Convexity for set-valued maps, Appl. Math. Lett. 9 (1996), 97-101.
[15]
R. B. Manfrino, R. V. Delgado and J.A.G. Ortega, Inequalities a Mathematical Olympiad Approach, Birkha ̈user, (2009).
[16]
O. L. Mangasarian, Pseudo-convex functions, SIAM Journal on Control, 3 (1965), 281-290.
[17]
D. S. Mitrinovic´, J. E. Pecˇaric´, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, (1993).
[18]
J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, (1992).
[19]
B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72-75.
[20]
T. Rajba, On strong delta-convexity and Hermite-Hadamard type inequalities for delta-convex functions of higher order, Math. Inequal. Appl. 18(1) (2015), 267-293.
[21]
M. Rostamian Delavar and S. S. Dragomir, On η-convexity, to appear in Math. Inequal. Appl.
[22]
S. Varosanec, On h-convexity, J. Math. Anal. Appl. 326(1) (2007), 303-311.
[23]
X. M. Yang, E-convex sets, E-convex functions and E-convex programming, J. Optim. Theory. Appl. 109 (2001), 699-704.
Browse journals by subject